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Abstract. Structure from Motion (SfM) has been widely studied in
many fields, such as computer vision, photogrammetry, robotics, etc.
Recent advancements focus on improving the real-time performance of
SfM, which is crucial for applications in augmented reality, mixed re-
ality, robotics, etc. However, the robustness of real-time processing is
still limited by outliers in the feature extraction and matching process,
stemming from challenging scenes depicting objects with poor texture,
repetitive structures, and symmetric objects, which can cause blunders in
the view-graph. Focusing on these scenes, a Learning-based View-Graph
generation method (LVG-SfM) is investigated and integrated into the on-
the-fly SfM pipeline [43]. First, to provide a higher number of reliable
matches and generate a more robust view-graph, a set of SoTA learning-
based feature extraction and matching methods [19] are tested. Then, the
spuriously incorrect two-view geometries generated from repetitive struc-
tures are removed from the view-graph with the help of SoTA learning-
based disambiguation network – Doppelgangers [3]. Experimental results
demonstrate that our LVG-SfM can successfully work on-the-fly on chal-
lenging ambiguous scenes with poor textures and repetitive structures,
achieving correct scene reconstructions and robustifying SfM. Project
website at: https://sygant.github.io/lvgsfm
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1 Introduction

In the past half-century, Structure-from-Motion (SfM) has been extensively stud-
ied in the fields of computer vision, photogrammetry, robotics, etc. It estimates
camera poses and sparse point cloud using three different approaches: (i) Incre-
mental SfM [1, 25, 38] solves images sequentially with recursive bundle adjust-
ment (BA); (ii) Hierarchical SfM [9,18,33] divides images into small subsets and
process them in parallel to improve time efficiency; (iii) Global SfM [6, 14, 36]
takes all potential two-view geometries as input and outputs all camera poses
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(a) original image (b) Colmap (c) Metashape (d) on-the-fly SfM [43] (e) LVG-SfM

Fig. 1: Reconstruction results of a scene with a symmetric object. LVG-SfM success-
fully generates a correct reconstruction while popular SfM software output incorrect
camera poses.

simultaneously. However, most of these SfM methods operate offline, whereas
the demand for real-time applications (such as quick disaster response, online
measurements, collaborative 3D mapping, etc.) is increasing. Therefore, many
researchers investigated online (or real-time) SfM solutions that aim to solve
camera poses and sparse point cloud at speeds comparable to the image captur-
ing rate, such as, online-feedback SfM [12], RTSfM [46], On-the-Fly SfM [42,43].

The input to both offline and online SfM approaches are feature correspon-
dences and eligible multi-view geometries. Relationships between images can be
modeled with a view-graph: images represent the nodes while edges relate images
through a metric derived from the correspondences or the two-view geometry.
Compared to offline SfM, online SfM is more sensitive to incorrect view-graphs.
Indeed, offline SfM first builds a complete view-graph which is then solved by
various robust estimation strategies, whereas online SfM incrementally adds the
newly captured image to already registered images, potentially causing two prob-
lems: first, given only a partial view-graph, a good initial stereo reconstruction
is much harder to obtain; second, the registration of newly captured image de-
generates if the partial view-graph contains a high rate of outliers. Therefore, an
accurate view-graph is crucial for online SfM. Moreover, lack of texture, pres-
ence of repetitive structures, or highly symmetric scenes pose a challenge to the
construction of a correct view-graph [11,41].

Supported by recent advancements in learning-based feature extraction, match-
ing and outlier detection methods, a more robust view-graph can be constructed,
significantly enhancing the performances of online SfM. The paper presents a new
real-time SfM solution, named LVG-SfM, which integrates and offers three op-
erative processes:

• Learning-based correspondence generation: we leverage on [19] to
extract and match sufficient and robust correspondences even in case of
poor textures using learning-based image matching methods, such as Super-
Point [7], DISK [30], ALIKE [45], ALIKED [44], SuperGlue [24] and Light-
Glue [15].

• Learning-based view-graph robustification for ambiguous edges elim-
ination: we leverage on Doppelgangers [3] to further prune, after the two-
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view geometric verification, a view-graph by eliminating ambiguous edges
due to repetitive structures.

• LVG-SfM: the proposed method builds upon [42] to offer an advanced and
robust real-time multi-agent SfM pipeline able to tackle ambiguous image
sequences with repetitive structures and poor texture scenarios.

As illustrated in Fig. 1, the newly presented method is successful in real-time
reconstruction, even in scenarios with poor textures and repetitive structures.
In contrast, existing online and offline methods, including commercial software,
often yield incorrect camera poses and visual artifacts.

2 Related work

In this section, three relevant topics are reviewed, including SfM, local feature
extraction and matching, and disambiguation of ambiguous scenes.

2.1 SfM

So far, SfM has obtained ample achievements, which is proved by many well-
established open-sourced SfM frameworks. Popular incremental pipelines in-
clude Visual SfM [37], Colmap [25] and Micmac [23], while OpenMVG [20] and
Theia [29] also support global SfM. Despite their popularity, all these SfM frame-
works work offline, meaning that image acquisition and image processing happen
separately. Online methods, on the other hand, concurrently solve SfM while im-
ages are being captured by one or multiple agents. To achieve the goal of online
processing, [46] proposed real-time SfM (RTSfM), employing hierarchical feature
matching and Bag-of-Words to boost image matching speed, however, spatiotem-
poral continuity between images is required. Recently, [42] proposed on-the-fly
SfM with a novel online image retrieval method to alleviate the requirement of
spatiotemporal continuity. [43] enhance this method to support multiple agents
and achieve online SfM by efficiently merging multiple submaps. Our approach
further improves the robustness of [43] by generating a more reliable view-graph
for subsequent processing.

2.2 Local Feature Extraction and Matching

Local feature extraction and matching are vital for image-based localization and
3D reconstruction. Over the last several decades, many popular hand-crafted de-
tectors have been developed, for example, SIFT [16], one of the most widely-used
features in SfM, is invariant to rotation and scaling, SURF [2] is an improved
version with higher detection speed and improved descriptor, ORB [22] is fre-
quently applied in VSLAM (visual simultaneous location and mapping) methods
due to its highly time-efficient detection and matching. However, all these meth-
ods show a certain degree of degeneration under very large viewpoint changes
and poor texture scenarios. In recent years, learning-based image-matching ap-
proaches have been investigated to overcome these defects. LIFT [40] introduced
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a Deep Network architecture encompassing several modules for detection, ori-
entation estimation, and feature description. SuperPoint [7] presented a self-
supervised network framework with two parallel heads to detect keypoints and
output descriptors, respectively. ALIKED [44] introduces the Sparse Deformable
Descriptor Head (SDDH) to efficiently extract strong expressiveness descriptors
in challenging images. DISK [30] employs a four-layer U-Net architecture to en-
sure precise extraction of feature points, combined with advanced reinforcement
learning algorithms for strategy optimization, allowing it to adaptively learn
which pixels are most representative. DeDoDe [8] learns keypoints directly from
3D consistency, using large-scale SfM reconstructions as supervision. Instead of
the conventional matching method based on the nearest neighbor search, re-
cently, motivated by the attention mechanism, SuperGlue [24] provides a new
learning-based approach by integrating the expressive capabilities of transform-
ers with optimal transport to handle extremely large view changes. However, its
training becomes more complex as the number of keypoints increases. Two SOTA
approaches, Loftr [28] and LightGlue [15] take inspiration from SuperGlue. Loftr
treats every pixel on the 1/8th resolution activation as a candidate keypoint
which is then matched similarly to SuperGlue, namely, detector-free matching
(and bundle adjustment [10]). LightGlue achieves faster inference speeds on eas-
ily matchable image pairs while maintaining higher accuracy on more challenging
image pairs.

2.3 Disambiguation of ambiguous scenes

All SfM methods rely on the correctness of feature matching and outliers removal.
Ambiguous datasets (Sec. 4.1, Tab. 2) pose a challenge for conventional SfM
methods. Generally, ambiguity arises from repetitive structures ranging from
duplicate instances of the same object caused by 3D rotational symmetries, sep-
arate but identical surfaces or mirrored structures – often found on building fa-
cades. Other sources of ambiguity are poor or repetitive textures, or the absence
of distinctive background features [11, 27, 35, 41]. Ambiguity can result in large
sets of wrong matches, translating to self-consistent incorrect epipolar geometries
(EG) that pass standard geometric verification [34], and ultimately lead to folded
or duplicated structures. Existing disambiguation methods are diverse. [41] an-
alyze missing correspondences among various overlapping images to check the
correctness of the corresponding image pairs, [5] exploit ambiguous matches to
first recover symmetry and then impose it as an additional constraint in bundle
adjustment, [11] proposes a post-processing solution, which detects conflicting
observations in the reconstructed model stemming from images observing 3D
points that should be occluded by other structures, [4] detect symmetry and
repetitive structures in building facades and use a graph-based global analysis
to recover correct 3D geometry, [26,34] both utilize the view-graph to explore the
distribution of matched and non-matched features among all images and estimate
a criterion for identifying repetitive structures, [31] detect ambiguity by leverag-
ing on the consistency of image background by looking for visual contradictions
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Fig. 2: Overall workflow of the proposed LVG-SfM. Mt denotes the number of matched
features, Nt is the number of inlier correspondences after two-view geometry verifica-
tion, Itw indicates the number of edges connecting new image and registered images

in scene segments, which may be few or difficult to detect. Recently, disambigua-
tion methods exploited deep-learning techniques. In [39] a graph convolutional
network is trained to perform image retrieval whereas [3] treat disambiguation
as a binary classification problem by training a model with pairs of images. This
model outputs the probability of ambiguity for the pair. Although this method
has limitations in non-landmark scenes, it outperforms other approaches in most
publicly available datasets with ambiguous image sequences [11, 21, 35] and for
this reason we integrate into the on-the-fly framework.

3 Methodology

The presented LVG-SfM supports multi-agent online processing of image se-
quences (acquired with/without photogrammetric acquisition recommendations).
The overall workflow (shown in Fig. 2) builds upon [42, 43] which contains
four main modules: image capturing with multiple agents, online image match-
ing, online sub-reconstruction and multiple submaps merging (more details can
be found at https://yifeiyu225.github.io/on-the-flySfMv2.github.io) and adds
new and revised functionalities: feature extraction and matching with various
learning-based methods [19], disambiguation of incorrect two-view geometries
resulting from repetitive structures using the Doppelgangers [3] approach.

3.1 Image Capturing with Multiple Agents

The image collector end supports a variety of image-capturing devices (e.g. mo-
bile phones or tablets), working simultaneously. The captured images are trans-
mitted to the processing end via local networks, 4G, or 5G. When simulating the
acquisition of an already existing dataset, the images are incrementally sent to

https://yifeiyu225.github.io/on-the-flySfMv2.github.io
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Table 1: Characteristics of the employed local features descriptors.

Methods Descriptor Dimension Invariances Complexity
of training

Real-time Performance
(with GPU)

SIFT 128 Scale, rotation none Fast
DISK 128 Scale and illumination changes hard Slow

ALIKED 256 Scale and illumination changes relatively easy Fast
SuperPoint 256 Scale, rotation and illumination changes hard Middle

the processing end in the same order as they are stored. Agents could focus on
separate sections of the scene without mutual overlap. For this reason, it should
be possible to reconstruct the scene into separate, incremental submaps which
may eventually be joined.

3.2 Online image matching with learning-based methods

In general, image matching is the first step and also one of the most time-
consuming processes. To achieve real-time performance for each new image, the
original retrieval module of on-the-fly SfM [43] uses a pre-trained global feature
extractor [13] and HNSW [17], selects up to 30 of the most similar pairs between
the new image and images in the "registered images" set - containing successfully
registered images and the "not registered images" set (see explanation below),
whereby image matching is performed.

In addition to the handcrafted SIFT feature and nearest neighbour matcher
employed by the original on-the-fly SfM, to cope with images of poor texture, as
Fig. 2 shows, three learning-based local feature extractors including SuperPoint
[7], DISK [30] and ALIKED [44] (Tab. 1) are tested, and two learning-based
feature matching methods are integrated by SuperGlue [24] and LightGlue [15].
Note that all the chosen approaches are considered references between learning-
based local features and matchers, but the current analysis could be extended
also to others features.

For these similar pairs, local features are extracted and matched using the
above-mentioned learning-based extractors. If the new image meets a require-
ment on the minimum number of matches (≥ 30) for at least two pairs, the
successful pairs proceed to the two-view geometry verification step. If not, the
new image is temporarily rejected and added to the "not registered images" set,
making it available for matching with future images.

3.3 Online sub-reconstruction with Disambiguation of two-view
geometries

Ambiguity typically results in incorrect matches due to object symmetry, sim-
ilarity or repetitive textures. These matches can sometimes pass the canonical
two-view geometry verification [32,34], making disambiguation hardly achievable
by focusing on a single pair. Thus, it is necessary to consider larger groups of
images and provide a global understanding of the scene’s ambiguity. Therefore,
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the Doppelgangers approach [3] is utilized, which considers all image pairs pass-
ing geometric verification. The method trains a classifier network using image
pairs of similar structures carefully selected from internet collections of world
landmarks. Additionally, the spatial distribution of the matches for the pair is
provided as input to the network. The classifier outputs the probability that the
given pair is a true match. If the number of remaining pairs after disambiguation
is above two, the newly captured image is oriented with the pipeline of [43] and
added into the "registered image" sets, otherwise, it is inserted into the "not
registered image" set. The result of the disambiguation process for each new im-
age is the updated partial view-graph pruned by removing connections between
ambiguous pairs.

For the online sub-reconstruction of our LVG-SfM, the canonical two-view
epipolar geometry is firstly verified based on RANSAC, only the two-view ge-
ometries with more than 15 inliner correspondences are sent to doppelgangers for
disambiguation (more details are described as above), then image with at least
two edges connecting to a submap is solved by image registration, triangulation
and efficient bundle adjustment.

3.4 Multiple submaps processing

Different agents can simultaneously work on separate parts of the scene, leading
to non-overlapping image subsets. For each of these subsets, a distinct submap
is created and updated in parallel. A new image could be added to one of the ex-
isting submaps based on the online sub-reconstruction or initiate a new submap
if a good initial stereo reconstruction is found between it and the images of
the"not registered image" set. As the number of common images between dif-
ferent submaps reaches a threshold, an attempt is made to merge the submaps
using the solution described in [43].

4 Experiments

Extensive experiments are conducted to demonstrate the efficacy of the pro-
posed approach. We differentiate the evaluation based on the type of datasets:
poor texture datasets and repetitive structure datasets. For the former, we as-
sess the performance of various learning-based feature extraction and matching
methods without disambiguation, including both quantitative and qualitative
evaluations. For the latter, we compare our LVG-SfM integrating both the Su-
perPoint+LightGlue combination and Doppelgangers [3] with three methods,
SIFT+NearestNeighbouring on-the-fly SfM (vanilla) [43] and on-the-fly SfM
with SuperPoint+LightGlue and a SIFT-based disambiguation pipeline [32] (see
Sec. 4.3). We set the probability threshold of [3] to 0.8 and the repetitive struc-
tures threshold of [32] to 0.25. The difference in the evaluation is motivated
by the fact that solutions for repetitive structure datasets, which exhibit rich
textures, are less dependent on the descriptor choice, as all extractor-matcher
combinations provide sufficient matches. All experiments are run on a machine
with i9-12900K CPU and RTX3080 GPU.
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Table 2: Datasets used in the experiments.

Dataset #images Image Size Source Scene Poor texture Repetitive structures

1002 37 840*840

[10]

Indoor
1003 36 840*840 Indoor
1008 53 840*840 Indoor
1021 47 840*840 Indoor
1025 56 840*840 Indoor
1026 48 840*840 Indoor

B3 199/342 1968*1312
[32]a

Outdoor
Indoor 51/152 1200*800 Indoor
ToH 86/339 1310*873 Outdoor

Cup 64 1067*800 [21] Indoor

ANC 448 various sizes with
various image agents

[11]

Outdoor

AdT 434 various sizes with
various image agents Outdoor

BG 175 various sizes with
various image agents Outdoor

CSB 277 various sizes with
various image agents Outdoor

RC 282 various sizes with
various image agents Outdoor

CSWU 354 various sizes with
various image agents Self-captured Outdoor

aFor B3, Indoor and ToH, a subset of images was selected to reduce image overlap and make
matching more difficult. ANC = Alexander Nevsky Cathedral, AdT = Arc de Triomphe, BG =
Brandenburg Gate, CSB = Church on Spilled Blood, RC = Radcliffe camera.

4.1 Datasets and Evaluation Metrics

Datasets. As reported in Tab. 2, 16 public datasets are employed in our exper-
iments. Six datasets (1002 to 1026) [10] are single-object indoor images featur-
ing poor textures. B3, Indoor, ToH, Cup and CSWU are sequentially acquired
images while the remaining 5 datasets from [11] are unordered Internet photo
collections. These last 10 datasets plus 1026 all depict ambiguous indoor and out-
door scenes characterized by repetitive structures and object symmetry. Sample
images of each dataset are shown in Fig. 4 and Fig. 6.

Evaluation Metrics. For the evaluation of extractor-matcher combination in
poor texture datasets, five metrics are selected: number of reconstructed 3D
points, Mean Track Length (MTL), number of reconstructed images (RIs), Av-
erage Mean Reprojection Error (AMRE) after each local bundle adjustment
(BA) and Final Mean Reprojection Error (FMRE) of the final BA. The first
three metrics correspond to the generated correspondences and correctness of
the view-graph, i.e., more correspondences could result in more reconstructed
3D points, higher MTL and probably more accurate image pose estimated with
more 2D-3D matches. The last two are common criteria for assessing the per-
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Fig. 3: Visual results of feature matching for a pair with poor textures in dataset 1008.

formance of bundle adjustment. The Disambiguation is evaluated qualitatively
by looking at two results: (i) the final view-graph in matrix form, which shows
the general distribution of the remaining two-view geometries; (ii) the camera
poses and 3D points in the reconstructions, which may highlight blunders in the
camera positions or artifacts in the resulting pointcloud.

4.2 Performance of learning-based feature extraction and matching
on poor texture

Several learning-based feature extraction and matching methods are compared:
SuperPoint + SuperGlue (SP+SG), SuperPoint + LightGlue (SP+LG), ALIKED
+ LightGlue (AD+LG), and DISK + LightGlue (DK+LG). Additionally, the de-
fault setting of on-the-fly SfM using SIFT and Nearest Neighbouring (SIFT+NN)
is tested as well. For each image, a maximum of 8000 features are extracted.

According to Tab. 3, the handcrafted SIFT+NN method generally achieves
the lowest AMRE and FMRE but with the lowest number of reconstructed
points and images, even failing to provide a reconstruction on two datasets with
poor textures (1002, 1008). In Fig. 3, a challenging example of matches for an
image pair of object 1008 is shown. This can be explained by: first, SIFT is
hard to detect keypoint that is salient on DoG (Difference of Gaussian) space
for poor texture, resulting in insufficient features and correspondences; second,
SIFT detects keypoints with higher 2D-position precision than the learning-
based methods that start the detection from low-resolution activations. Thus, the
limited number of reconstructed 3D points and higher-precision 2D observations
involved in the BA might lead to over-fitting to the assumptions embedded in
ray projection mode (internal precision of collinearity equation).

Learning-based feature extraction and matching methods achieve compara-
ble metrics in Tab. 3. DISK+LightGlue outperforms in terms of reconstructed
points thanks to its high number of matches as shown in Fig. 3). All learning-
based methods are capable of registering nearly all images, producing sparse
reconstructions with far more 3D points than SIFT+NN. These methods are in-
deed superior in extracting a higher amount of features in poor texture scenarios
and in providing more reliable matches between pairs.

When looking into the visual results in Fig. 4, SIFT+NN never achieves
a correct reconstruction while no clear winner emerges between learning-based
methods, showing that, for datasets with poor textures, the final reconstruction
is strongly dependent on the descriptor choice. Dataset 1008 achieves the worst
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Table 3: The quantitative results on several datasets with poor texture. “-” denotes
failure, best is highlighted in bold. MTL = Mean Track Length, AMRE = Average
Mean Reprojection Error, FMRE = Final Mean Reprojection Error.

Dataset Method #points RIs MTL AMRE FMRE

1002

SIFT+NN - - - - -
SP+LG 1684 37/37 3.43 2.33 0.77
DK+LG 10624 37/37 6.94 1.26 0.68
SP+SG 2437 36/37 3.98 1.36 0.70
AD+LG 7138 37/37 7.82 1.24 0.63

1003

SIFT+NN 250 19/36 4.79 1.18 0.43
SP+LG 3266 36/36 5.38 1.48 0.92
DK+LG 9527 36/36 4.4 1.48 0.83
SP+SG 3195 36/36 5.62 1.50 0.93
AD+LG 4517 36/36 5.41 1.52 0.86

1008

SIFT+NN - - - - -
SP+LG 1887 53/53 4.42 1.29 0.79
DK+LG - - - - -
SP+SG 1335 53/53 4.88 1.29 0.78
AD+LG - - - - -

1021

SIFT+NN 878 21/47 3.89 0.70 0.17
SP+LG 1636 47/47 5.06 1.26 0.70
DK+LG 8137 47/47 8.62 1.91 0.82
SP+SG 1543 47/47 5.33 1.23 0.68
AD+LG 3338 47/47 12.4 1.30 0.67

1025

SIFT+NN 567 15/56 3.90 0.84 0.24
SP+LG 3976 56/56 5.43 1.38 0.82
DK+LG - - - - -
SP+SG 3650 56/56 5.78 1.42 0.87
AD+LG 2563 56/56 4.65 1.21 0.57

results because of the nature of its reflective and homogeneous texture, which is
further complicated by the symmetry in the object.

Real-time performance. Tab. 4 provides the average processing time for
each new fly-in image. According to these five datasets, it can be concluded that,
although more matches and tie points are involved in the reconstruction process-
ing using the learning-based method, the cost time basically stays the same with
just very slight differences that could not affect the real-time performance. 1

1In line with [43], we define “real-time” performance as solving each new image
before the next one flies in. Capturing, storage, and transmission typically take 2-3
seconds for each image.
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Fig. 4: Reconstruction results on poor texture datasets using various learning-based
methods. Correct results are bounded by green boxes.

4.3 Performance of disambiguation on repetitive structures

The two-view geometry elimination method employed in this work is tested on
11 datasets (listed in Tab. 2) containing repetitive structures. Four methods
are compared: the vanilla on-the-fly SfM [43], the vanilla on-the-fly SfM [43]
with learning-based combination of SP+LG, the presented work (LVG-SfM),
and the disambiguation method by Wang et al . [32] tested with SIFT feature
and matching.

Fig. 5 illustrates the resulting view-graphs in matrix form using the four
methods on the 11 datasets. In the vanilla on-the-fly SfM and its enhanced
version with SP+LG where only the canonical two-view geometry verification
is applied, it results in a dense view-graph that might contain many incorrect
edges, in which the enhanced one generates more dense view-graph due to more
generated matches shown as Fig. 3. The datasets from [11] yield irregular view-
graph than the other six datasets, as these five datasets [11] are crowd-sourced
images captured by different tourists in an arbitrary way. The other two methods
exhibit much sparser view-graph with outliers removal of two-view geometry
resulting from ambiguous texture, and their effect on 3D reconstruction is shown
in Fig. 6. In this figure, it can be seen that, the baseline method of vanilla
on-the-fly SfM without outlier elimination yields various degrees of artifacts
illustrated by the red circles, even for the enhanced version, the reconstruction
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Table 4: Average processing time (in seconds) for each newly added image.

Dataset SIFT+NN SP+LG DISK+LG SP+SG AD+LG

1002 - 2.95 2.78 2.84 2.92
1003 3.22 2.78 2.81 2.83 2.83
1008 - 3.21 - 3.19 -
1021 3.17 3.09 3.04 3.11 3.06
1025 3.25 3.25 - 3.32 3.25

Fig. 5: View-graph results of different methods. The vertical and horizontal axis denote
the image ID, whereby the darker the pixel is the more inlier correspondences the
corresponding two-view geometry includes. White pixels indicate removed two-view
geometries

is not improved by SP+LG as it is achieved in the tests on poor texture (see
Tab. 3), this in turn demonstrates that learning-based correspondences fail to
handle images with repetitive structures. Nevertheless, after integrating with
doppelgangers and [32] that are tailored for classifying image pairs of repetitive
structure, the reconstruction performance is obviously boosted. Particularly, for
the 1026 dataset which contains both poor and ambiguous textures, LVG-SfM
notably outperforms the other three methods. Compared to [32], the proposed
method generates many superior results on ToH, Cup, ANC, AdT, BG, CSB,
RC and CSWU, and nearly the same results on B3 and Indoor, this is due to that
the Doppelgangers [3] used in our work was pre-trained on outdoor datasets, it
is hard to completely eliminate the impact of ambiguous textures in the indoor
dataset (Indoor) and B3 contains critical two-view configuration of very short
baseline that might lead to negative influence for SfM.

In addition, analogous to Tab. 3, the numerical results including the aver-
aging processing time per new image are provided in Tab. 5. In general, our
LVG-SfM and the enhanced version reconstruct nearly the same level number
of 3D points, both are higher than the SIFT-based methods. For BG, CSB and
RC, our LVG-SfM has less 3D points than the enhanced version does, as two
independent sub-reconstructions are generated due to the removed edges by dop-
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Fig. 6: Reconstruction results of datasets with repetitive structures. Blunders are high-
lighted in circles. The split reconstructions of BG, CSB, and RC are identified by dif-
ferent colors.

pelgangers and these kind of split reconstruction is consistent with the results
shown in [3], which is in accordance with the dataset itself. Comparing the val-
ues of RIs, without disambiguation, the enhanced method and vanilla method
can generally register more images, whereas the obtained 3D points and cam-
era poses are incorrect as Fig. 6 visualizes. After disambiguation, the proposed
LVG-SfM performs better than [32] with respect to reconstructing more images
correctly. The MTL is indeed decreased a little by disambiguation of view-graph,
but it basically stays in the second best place for our LVG-SfM. In the bundle
adjustment, all the four methods achieves final mean reprojection error of sub-
pixel. Although better reconstruction can be achieved in this work, as Tab. 5
shows, comparing LVG-SfM and on-the-fly SfM (SP+LG), the computation in-
volved in the inference of Doppelgangers results in an additional average delay
of 0.5 seconds per newly captured image to eliminate outliers in two-view geom-
etry caused by ambiguous textures. This indicates that LVG-SfM is capable of
handling images with ambiguous textures, although there is a slight decrease in
real-time performance.

5 Conclusions and Future Works

This work focused on generating a robust view-graph via learning-based feature
extraction and matching methods to improve the performance of the online SfM
pipeline [43], especially in scenes with poor texture or repetitive structure, which
generally result in incorrect camera poses and folded or duplicated point clouds.
SOTA learning-based feature extraction and matching methods [19] provided a
higher amount of matches between pairs in these challenging scenarios, hence
generating a more reliable input view-graph which we further robustified by
pruning incorrect matches stemming from ambiguous pairs with the learning-
based Doppelgangers disambiguation method [3]. As the experimental results
show, our LVG-SfM successfully recovers correct camera poses and outputs more
reasonable 3D points with on poor texture areas.
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Table 5: The quantitative results on several datasets with repetitive texture. “-” de-
notes failure, best is highlighted in bold.

Datasets method #points RIs MTL AMRE FMRE Averaging time per Image
(in second)

1026

LVG-SfM 1799 41/48 5.64 1.83 0.86 3.54
On-the-fly SfM (SP+LG) 2162 48/48 5.24 1.23 0.74 3.03
On-the-fly SfM (Vanilla) – – – – – –
Wang and Heipke [32] 1244 46/48 4.54 0.57 0.11 3.81

B3

LVG-SfM 161313 199/199 4.94 0.97 0.45 3.64
On-the-fly SfM (SP+LG) 164848 199/199 5.18 1.03 0.50 3.21
On-the-fly SfM (Vanilla) 35083 198/199 4.34 0.43 0.06 2.61
Wang and Heipke [32] 35694 184/199 4.00 0.43 0.17 3.94

Cup

LVG-SfM 23353 64/64 5.59 1.25 0.72 3.41
On-the-fly SfM (SP+LG) 26126 64/64 5.58 1.27 0.74 2.91
On-the-fly SfM (Vanilla) 5764 64/64 6.74 0.53 0.02 2.5
Wang and Heipke [32] 6441 64/64 6.70 0.37 0.17 3.44

Indoor

LVG-SfM 34523 51/51 4.45 1.09 0.59 3.33
On-the-fly SfM (SP+LG) 33335 51/51 4.89 1.07 0.68 2.94
On-the-fly SfM (Vanilla) 7322 51/51 3.79 0.50 0.06 2.44
Wang and Heipke [32] 8385 51/51 3.59 0.36 0.15 3.74

ToH

LVG-SfM 61280 86/86 7.63 1.73 0.74 3.55
On-the-fly SfM (SP+LG) 40506 86/86 13.09 1.32 0.99 3.15
On-the-fly SfM (Vanilla) 34997 86/86 5.06 0.87 0.04 3.12
Wang and Heipke [32] 46542 71/86 2.10 0.64 0.11 4.02

CSWU

LVG-SfM 164110 354/354 14.38 2.10 0.99 3.74
On-the-fly SfM (SP+LG) 155247 354/354 14.50 1.46 0.97 3.11
On-the-fly SfM (Vanilla) 80413 345/354 8.40 1.05 0.04 2.73
Wang and Heipke [32] 13473 76/354 7.10 0.81 0.21 4.22

ANC

LVG-SfM 171206 438/448 7.25 1.40 0.10 3.55
On-the-fly SfM (SP+LG) 133529 448/448 8.08 1.43 0.37 2.84
On-the-fly SfM (Vanilla) 77554 444/448 4.82 1.09 0.07 2.66
Wang and Heipke [32] 38724 414/448 4.24 0.56 0.03 3.99

AdT

LVG-SfM 134234 347/389 7.31 1.41 0.74 3.44
On-the-fly SfM (SP+LG) 121629 387/389 8.93 1.54 0.12 2.86
On-the-fly SfM (Vanilla) 27776 213/389 7.19 1.08 0.05 2.23
Wang and Heipke [32] 27777 327/389 5.81 0.65 0.16 3.77

BG

LVG-SfM 26978/60430 (67,185)/297 5.92/7.71 1.31/1.40 0.26/0.25 3.61
On-the-fly SfM (SP+LG) 76680 296/297 8.54 1.47 0.13 3.01
On-the-fly SfM (Vanilla) 23144 268/297 5.30 0.95 0.21 2.31
Wang and Heipke [32] 11354 262/297 4.31 0.57 0.09 4.12

CSB

LVG-SfM 34732/60528 (94,154)/277 9.18/9.22 1.43/1.47 0.13/1.72 3.57
On-the-fly SfM (SP+LG) 95961 276/277 9.80 1.54 1.14 3.03
On-the-fly SfM (Vanilla) 44167 268/277 5.88 1.09 0.21 2.36
Wang and Heipke [32] 33856 268/277 6.42 0.63 0.15 3.88

RC

LVG-SfM 42161/22713 (186,90)/282 11.95/8.63 1.44/1.39 0.92/0.07 3.42
On-the-fly SfM (SP+LG) 54335 282/282 13.95 1.53 1.07 2.74
On-the-fly SfM (Vanilla) 47695 277/282 7.10 1.09 0.02 2.35
Wang and Heipke [32] 43866 275/282 6.62 0.67 0.04 4.23

In the future, we plan to further expand the LVG-SfM pipeline in two direc-
tions: first, exploring and integrating more learning-based matching and outlier
removal methods; second, integrating learning-based methods for real-time dense
point cloud and surface mesh generation.
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